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A Dissipative Integral Sliding Mode Control Redesign Method 
for Uncertain Nonlinear Switched Systems 
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Abstract: This paper develops a new method of integral sliding mode control redesign for 
a class of perturbed nonlinear dissipative switched systems by modifying the dissipativity-
based control law that was designed for the unperturbed systems. The nominal model is 
considered affine with matched and unmatched perturbations. The redesigned control law 
includes an integral sliding-based control signal such that the system always operates on the 
sliding mode and the dissipativity of the perturbed switched system is maintained from the 
initial time of the system operation for the norm bounded perturbations. The proposed 
techniques eliminate the restrictive design conditions on the derivative of storage functions 
offered in a recent work. In addition, the global dissipativity of the perturbed system is 
always maintained if the original unperturbed system is globally dissipative. Depending on 
the type of stability of the unperturbed system, the designed control law for the perturbed 
system guarantees robust exponential or asymptotic stability of the closed-loop system. The 
theoretical results are applied to nonlinear switched systems, and the convergence of the 
state vectors to the origin is verified by simulation in presence of nonlinear perturbations. 
 
Keywords: Control Redesign, Dissipativity, Integral Sliding Mode Control, Nonlinear 
Switched Systems, Perturbation. 

 
 
 
1 Introduction1 
A dynamical switched system is a system that switches 
among several subsystems based on a switching law. 
Many real-word systems such as automotive engine 
control systems [1], robot control systems [2], and 
haptic interfaces [3] demonstrate switching behaviors. 
As such, the switched systems have drawn considerable 
attention in the control and system analysis [4-6]. 
Employing a proper switching strategy in the control of 
linear or nonlinear systems often leads to better 
robustness and transient performance [7, 8]. Different 
methods of the stability analysis and stabilization have 
been purposed for the switched systems [9-11]. The 
Lyapunov base stability theory still plays a dominating 
role in the stability analysis and control design, [12, 13]. 
The common Lyapunov function method may be 
employed for different subsystems which guarantees the 
stability under an arbitrary switching law [10, 14]. 
However, since the common Lyapunov function method 
may make the design very conservative, the multiple 
Lyapunov function is proposed in [15], and became a 
standard analysis tool for most switched system designs 
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[16]. This method was further developed into dwell-
time method [17, 18] and average dwell-time method 
[10, 19-21] which are only applicable for the switching 
systems with designable switching law. 

Dissipativity and passivity introduced by Willems 
[22], are powerful tools for the stabilization analysis. 
Storage functions are usually related with the system’s 
energy and can be candidates for the Lyapunov 
functions [23]. Additionally, dissipativity and passivity-
base analysis can be helpful for proving the stability of 
the switched systems [24-26]. In [27], the classic 
passivity and the stability results were extended to cover 
the switched systems. The multiple storage functions 
and multiple supply rates for the switched systems were 
presented in [28, 29]. In [30], the feedback passivation 
conditions of the switched cascade nonlinear systems 
have been investigated. The average dwell-time base 
exponential stability of the switched nonlinear systems 
with passive and nonpassive subsystems is studied in 
[31]. 

Considering the fact that dissipativity and passivity 
are powerful tools for the analysis and the control 
design of the switched nonlinear systems, it would be 
interesting to be able to employ these tools for the 
perturbed switched systems, and to find how a 
dissipative switched nonlinear system can preserve its 
dissipativity property and consequently its stability in 
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presence of these perturbations. To the best of our 
knowledge, the dissipativity-based redesign method for 
deterministic switched nonlinear systems with 
uncertainties and perturbations are only considered in 
[32-34]; however, the presented method in [32] was 
developed only for matched perturbations, and the 
works in [33, 34] require vanishing unmatched 
perturbations and have restrictive inequality conditions. 
These restrictive conditions generally reduce the global 
dissipativity-based results of the original system into 
local results for the perturbed system. Other available 
robust methods for the switched nonlinear systems 
which are not based on passivity and dissipativity, 
require the switching law to be designable or restrict it 
[11, 35, 36]. 

On the other hand, sliding mode control is an 
effective robust control method for unmatched 
perturbations [37, 38] and its response, typically, 
includes two phases: reaching phase and sliding phase. 
In the reaching phase, system is sensitive to 
uncertainties and perturbations. To eliminate the 
reaching phase, an integral sliding mode is proposed in 
[39], and widely applied to various systems [40-42]. In 
[35, 43], integral sliding mode control is developed only 
for cascade uncertain switched systems with at least one 
linear part. Moreover, these designs are based on 
average dwell-time approach and restrict the switching 
law. Additionally, in [43], Lipschitz condition is needed 
for the nonlinear part. 

In this paper, the storage function redesign method 
combined with an integral sliding mode control is 
offered for the first time by including a variable 
structure control law to guarantee the preservation of the 
dissipativity of the closed-loop nonlinear switched 
system in the presence of norm bounded perturbations. 
The dissipativity-base controller redesign offered in [34] 
for nonlinear switched systems with matched and 
unmatched vanishing perturbations forces restrictive 
conditions in the form of nonlinear inequalities. Usually 
these conditions results the local robust stability of 
perturbed switched system. Elimination of these 
restrictions while keeping the capability of the redesign 
approach in the presence of matched perturbations, 
motivated us to suggest a combined scheme consisting 
of this method and the integral sliding mode control for 
the nonlinear switched systems using multiple storage 
functions. The major advantage of this method is that it 
robustifies the available nominal controllers, thereby 
preserving the primary control objectives, while 
reducing the complexity of the robust controller design 
of the nonlinear switched systems. With this method, 
the switching law is not necessary to be designable, the 
restrictive conditions on the derivatives of the storage 
functions given in [32] are eliminated. The proposed 
method can only be applied to the perturbed switched 
systems whose control laws for their original 
unperturbed systems were designed based on 
dissipativity. Moreover, the original system must be 

affine, which is a usual assumption in passivity based 
stability analysis literature. To verify the theoretical 
results, the perturbed switched systems are considered 
in two examples, and the stability conditions are 
derived. Then, the simulation results are provided to 
show the effectiveness of the proposed method. 

The rest of the paper is organized as follows: In 
Section 2, the model of the switched system is 
introduced, and the notion of dissipativity for the affine 
nonlinear switched systems is offered. Then, the 
sufficient conditions for the dissipativity of the affine 
nonlinear switched systems are derived. In Section 3, an 
integral sliding surface is presented which preserves the 
dissipativity property of the closed-loop system on the 
sliding surface. Then, a variable structure control is 
introduced which always places the switched system on 
the sliding mode. In Section 4, the theoretical results are 
illustrated by an example. Finally, the conclusion of the 
paper is presented in section 5. 
 
2 The Preliminaries and the Problem Statement 

Consider the affine nonlinear perturbed switched 
system of the form: 

( ) ( )
( ) ( )( ) ( ) ( )( )
),(

,,,,
,

txhy
tuxtxutxgIxg

txfxfx

i

iiiii

ii

=
Δ+Δ++
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  (1) 

where ( ) { }mMti ,,2,1 …=∈  is the switching signal that 
may depend on time, states or both, m  is the number of 
subsystems, nRx∈ , p

i Ru ∈  and pRy∈  are the state, 
input and output vectors of the i -th subsystem, 
respectively, I  is an identity matrix with proper 
dimension, and ( )xf i , ( )xg i  and ( )txhi ,  are given 
continuous functions. The bounded terms: 

( ) ( ),,, , txtxf ifi ρ≤Δ mi ,,2,1 …=       (2) 

are unmatched perturbations, and: 
( ) ( ) ,1,, , <≤Δ txtxg igi ρ          (3) 

and: 
( ) ( )txtux iuii ,,, ,ρ≤Δ ,         (4) 

are matched perturbations with known nonnegative 
functions ( )txif ,,ρ , ( )txig ,,ρ  and ( )txiu ,,ρ . 

The switching sequence between the subsystems is 
defined as ( ) ( ) ( ){ }…… ,,,,,,, 1100 jj tititi=Σ , Mi∈  and 

Nj∈  where N  is the set of nonnegative integer 
numbers of switches, 0t  is the initial time, jt  is the time 
that system switches to ji -th subsystem and hold on it 
until [ )1, +∈ jj ttt , assuming 1+≠ jj ii  and 1+< jj tt . More 
specifically, index ji specifies that the i-th subsystem 
has become active at the j-th switching event. 

The following assumption is used in the stability 
analyses that are based on multiple storage functions. 
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Assumption 1: The states of the switched system do 
not jump in the switching instances, and thus, the 
trajectory ( )tx  is always continuous. 

In following definition, multiple storage functions 
and multiple supply rates are introduced to characterize 
the dissipativity property for the affine nonlinear 
switched systems (1). 

Definition 1 [34]: The nominal form of system (1) 
under the switching sequence Σ  is said to be dissipative 
if for any subsystem i , ),,2,1( mi …= , there exist 
positive definite continuous storage functions ( )xSi , 
locally integrable supply rate functions ( )iii huw , , and 
locally integrable cross supply rate functions 

( )thuxw iiij ,,, , ( 1,2, , , )j m i j= ≠…  such that when the 
i-th subsystem is activated for the k-th time 
( 1,, +<≤≤∀ kk ttstts ), the following conditions hold: 
i) 

( )( ) ( )( ) ( )
1,,2,1,0

,,,,

+<≤≤=

≤− ∫
kk

t

s iiiii

ttstk

dthuwssxSttxS
kkkkk

…
 (5) 

ii) 

( )( ) ( )( ) ( )
1,,2,1,0

),(),(),(,,

+<≤≤=

≤− ∫
kk

t

s iijijj

ttstk

dhuxwssxSttxS
kkk

…

τττττ
(6) 

iii) For all ji ≠  ( and , 1,2, , )ki i i j m= = …  and all 

0tt ≥ , there exist inputs ( ) ( )( )ttxtui ,α=  and 

[ )1( ) 0,ij t Lϕ +∈ ∞ , which may depend on the switching 

sequence Σ  such that: 
( ) ( ) ( ) 0,000 =+ tgf ii α ,         (7) 

( ) ( )( )( ) 0, ≤txhtuw iii ,         (8) 

and; 
iv) For all ji ≠  there exist ( ) [ )∞∈ + ,01Ltijφ , such that: 

( ) ( ) ( )( ) ( )ttthtutxw ijiiij φ≤,,,         (9) 

The common states between all subsystems causes 
the flow of energy from the active in to inactive 
subsystems, and is characterized by ijw  which denotes 
supply rate of energy from the i -th to the j -th 
subsystem as presented in condition (6). Eq. (7) 
guarantees the origin as the equilibrium point of the 
system. Inequalities (8) and (9) imply the existence of a 
control law iu  that decreases the energy of the i -th 
active subsystem and also the boundedness of the stored 
energy in the j -th inactive subsystem supplied by the 
i -th active subsystem. 

Remark 1: In definition 1, for radially unbounded 
storage functions, the nominal control signal 
( ) ( )( )ttxtui ,α=  globally stabilizes the nominal 

switched system. These conditions are sufficient for 
stability in the sense of Lyapunov and there exists other 
sufficient conditions, such as the form of supply rate 

functions and the constraints on the switching law, that 
guarantee the other type of stability, e.g. the sufficient 
conditions for global asymptotic stability of unperturbed 
nonlinear switched systems are presented in [29]. These 
additional conditions are assumed to be considered in 
the primary control design and based on the desired 
primary control objectives. 

Remark 2: If one can set supply and cross supply 
rate function to zero, i.e., wij = 0, i, j = 1,2,…,m, the 
storage functions can be taken as Lyapunov functions. 
On the other hand, for a Lyapunov based stability 
analysis, the multiple Lyapunov functions can be 
considered as the storage functions and the system is 
dissipative with zero supply and cross supply rate 
functions. 

Assumption 2: The unperturbed form of nonlinear 
switched system (1) is dissipative and globally stable 
under the given switching law Σ  with controllers 
( ) ( )( )ttxtui ,α= , i.e., there exist a set of radially 

unbounded storage functions that satisfy the 
dissipativity conditions of definition 1 under this 
switching law. 

Assumption 3: Extending the dissipativity condition 
(7) for the closed loop perturbed system yields: 
( ) ( )

( ) ( )( ) ( ) ( )( ) 0,,0,0,00
,00

=Δ+Δ++
Δ+

tututgIg
tff

iiiii

ii    (10) 

The above condition can be satisfied in different 
ways, e.g., ( ) 00 =if , ( ) 0,0 =Δ tfi  and ( ) 00 =ig . 
Therefore, to satisfy (10), the perturbations do not need 
to be vanishing. 

Remark 3: By considering ( ) 1CxSi ∈ , 
mi ,,2,1 …= , the dissipativity conditions (5) and (6) can 

be rewritten as: 

( ) ( ) ( )( ) ( )iiiiii
ii

i huwtxxgxf
x
S

t
S

S ,, ≤+
∂
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+
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= α ,     (11) 
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x

S
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iii
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,,,

,
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+
∂

∂
+

∂

∂
= α ,     (12) 

where the t  is belong to the interval of time that the i-
th subsystem is active. These inequalities are used to 
derive the dissipativity conditions of the perturbed 
switched system. 

Notice that any perturbation and uncertainty may 
cause the dissipativity conditions (5) and (6) and also 
the stability of the perturbed system no longer hold. The 
problem is to redesign the control law and to provide the 
sufficient conditions that preserve the dissipativity of 
the perturbed switched system as well as the primary 
control objectives. Therefore, the purpose is to robustify 
the controller using a sliding mode approach to 
compensate the side effects of perturbations (2), (3) and 
(4), so as to preserve the dissipativity and stability of the 
switched system (1) in the presence of norm bounded 
perturbation. 
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3 Main Results 
3.1  The Dissipativity Condition and Integral Sliding 

Surface 
Sufficient conditions for preserving the dissipativity 

of the perturbed switched system (1) is provided in the 
following Lemma. 

Lemma 1: Considering Assumption 2 and the 
dissipativity conditions of the nominal system given in 
(5) to (9), if the following conditions: 

( ) ( )( ( )( ) ( ) ( )(
( ))) ( ) mjittux

txtxutxgIxgtxf
x
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iiiii
j

,,2,1,,,,

,,,,

…=≤Δ+

−Δ++Δ
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∂
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α   (13) 

hold for any ( ) [ )∞∈ + ,01Ltijψ , where ( ) 0=tiiψ , then, 
the perturbed switched system (1) is dissipative with the 
same storage, supply, and cross supply rate functions as 
the nominal system. 

Proof: Rewriting (5) and (6) for the perturbed 
switched system (1) yields: 
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The perturbations ifΔ , igΔ  and iΔ  are characterized 
in (2), (3) and (4), respectively. Therefore one can easily 
see that if: 

( ) ( ) ( )( ) ( ) ( )((
( ))) ( ) mjittux

txtxutxgIxgtxf
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for any ( ) [ )∞∈ + ,01Ltijψ  with ( ) 0=tiiψ , the inequalities 
(11) and (12) are satisfied; hence, the perturbed 
switched system (1) is dissipative. 

Remark 4: Conditions (13) are the sufficient 
conditions to preserve the dissipativity of the perturbed 
switched system (1) which can be achieved by proper 
control signals ( )txui , , mi ,,2,1 …= . Therefore, any 
control objectives based on the storage, supply and 
cross supply rate functions for the nominal switched 
system, hold for the perturbed switched system (1) as 
well. 

In following, a nonlinear integral sliding surface is 
used to achieve the sufficient conditions (13) and, 
consequently, the dissipativity of the perturbed switched 
system (1). 

As in [40], the nonlinear integral sliding surface is 
chosen as: 

( ) ( ) ( ) midgftxtxHS
t

t
iiis ,,2,1,

0

0 …=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−−×= ∫ τα (17) 

where iHg  is invertible and npRH ×∈  is known as the 
sliding surface matrix which is a constant matrix. 

Remark 5: The sliding surface (17) depends on the 
initial time 0t  such that ( ) 00 =tSs , which eliminates the 
reaching phase in the sliding control approach. For this 
reason, the system is more robust against uncertainties 
and disturbances than the other sliding-base control 
systems with reaching phase [40]. 

The following theorem show that when the system is 
in the sliding surface, the dissipativity of the perturbed 
nonlinear switched system (1) is guaranteed. 

Theorem 1: Suppose that the Assumption 2 holds. 
Then, the nonlinear perturbed switched system (1) is 
dissipative and globally stable on the integral sliding 
surface 0=sS  in (17) with the same switching law, 
storage, supply and cross supply rate functions as ones 
of nominal switched system. 

Proof: When the uncertain nonlinear switched 
system (1) operates in the sliding surface, we have: 

0=sS                 (18) 

Differentiating the sliding function (18) with respect 
to the time, one can obtain: 

( )( )iiis gftxHS α−−= , mi ,,2,1 …=         (19) 

Substituting (1) in to the (19) yields: 

( ) ( )( ( ) ( ) ( )
( ) ( )( ) ( ) ( )( ))

( )(
( ) ( )( ) ( ) ( ) ( )( )).,,,,,

,
,,,,

,,,,,
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i
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α

α
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Δ+Δ++
−−Δ+=

(20) 

Since the system is in sliding mode, then 0=sS . 

Solving the equation 0=sS  yields: 

( ) ( )(
( )( ) ( ) ( ) ( )( )) .0,,,,,

,
=−Δ+Δ+

×+Δ
txtuxtxutxgI

xgtxfH

iiiii

ii

α
  (21) 

According to the condition (3), ( )igI Δ+  is 
invertible. Additionally, iHg  is nonsingular and H  is 
full rank. The above equality yields a valid equivalent 
control as: 

( ) ( )( ) ( ) ( )( )
( ) ( )( )( ) ( ).,,

,,,,,
1

1

txfHtxgIxHg

tuxtxtxgItxu

iii

iiiiieq
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− α
(22) 

Since H  is full rank, Equation (21) results in: 

( ) ( )
( )( ) ( ) ( ) ( )( ) .0,,,,,

,
=−Δ+Δ+

×+Δ
txtuxtxutxgI

xgtxf
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(23) 
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Consequently, one can see that the inequality (13) is 
satisfied when the system (1) operates on the integral 
sliding surface (17). Thus, according to Lemma 1, the 
perturbed switched system (1) is dissipative with the 
same storage, supply and cross supply rate functions as 
nominal system. Notice that, satisfying (7) and (23) 
results the conditions (10) which implies that the origin 
is the equilibrium point of the perturbed switched 
system (1). Thus, any dissipative-based results about the 
equilibrium point of the unperturbed nonlinear switched 
system is still valid for the system in the presence of the 
perturbations. 

Remark 6: Equation (23) holds for the perturbed 
switched system (1) on the sliding surface (19). 
Therefore, the dissipativity condition (7) for the 
perturbed switched system (1) is satisfied, and thus, the 
origin remains as the equilibrium point of the perturbed 
switched system on the sliding surface. Since these 
results are valid even for nonvanishing norm bounded 
perturbations, this control redesign method is robust for 
different types of perturbations more than the ones are 
considered in [32]. 
 
3.2  Finding the Robustifying Control Signal for the 

Norm Bounded Perturbations 
By Theorem 1 in the previous subsection, we offered 

a nonlinear integral sliding surface such that the sliding 
mode is stable, and thus the dissipativity and stability 
properties are preserved. In this section, we design the 
sliding mode control law such that the trajectory of the 
perturbed switched system (1) remains on the sliding 
surface from the initial time. The following theorem 
guarantees the above objective. 

Theorem 2: Consider the integral sliding surface 
(17) for the perturbed switched system (1) under the 
switching law Σ , and suppose that the functions 

( )xtif ,,ρ , ( )xtig ,,ρ  and ( )xtiu ,,ρ  in (2), (3), and (4) are 
the norm upper bound functions. Then, using a variable 
structure controller of the form: 
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guarantees that the perturbed system operates on the 
sliding mode from the initial time and remains in it for 
all 0tt > , where iλ ’s are arbitrary non-negative 
constant scalars which adjust the convergence rate to the 
sliding surface. 

Proof: Choose the Lyapunov function candidate as 
follow: 

.
2
1

s
T
s SSV =                (25) 

When the i-th subsystem is active, the time 
derivative of V  along the trajectory of the switched 
system (1) is: 

( ) ( ) ( )(
( )( ) ( ) ( )( )
( ) ( ) ( ))

( ) ( )(
( )( ) ( ) ( ) ( )( )).,,,,,

,

,
,,,,

,

txtuxtxutxgI
xHgtxfHS

txxgxf
tuxtxutxgI

xgtxfxfHS

SSV

iiiii

ii
T
s

iii

iiii

iii
T
s

s
T
s

α

α

−Δ+Δ+
×+Δ=

−−
Δ+Δ+
×+Δ+=

=

(26) 

Substituting the control signal (24) in to the above 
equation yields: 
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Using the matrix norm inequality in above equation 
and some manipulations results in: 
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Since ( )xHgi  is not singular, then, ( ) 0≠xSs  results 

in 0<V . Therefore, since ( )( ) 00 =txS s , the controller 
(24) preserves the sliding mode for all 0tt > . As shown 
in the last line of Inequality (28), iλ ’s determine the 
decade rates of the Lyapunov function for each 
subsystem and can be adjusted by designer. The 
assumption 1, <igρ  prevents zero division in (24). This 
completes the proof. 
 
4 Simulation Results 

To illustrate the results, we study the example is 
based on the one presented in [30]. The nonlinear 
switched system is comprised of two subsystems with: 
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The state feedback control laws designed in [30] for 
the subsystems are: 
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α

           (30) 

and the switching strategy is: 
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⎨
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=
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1
4
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which guarantee that the switching system is passive 
and asymptotically stable. The behavior of the 
unperturbed closed-loop system is verified in Fig. 1 in 
which the switching occurs at t = 0.15 sec. The initial 
state condition for all simulations of this example is 
considered as ]1,3[0 −=x . The storage functions used in 
[30] are considered as ( ) ( )2

2
4
11 5.05.0 xxxS +=  and 

( ) ( )2
2

2
12 5.0 xxxS += . 

Now, consider the uncertainties: 
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for the switched system (1), the stability of switched 
system in the presence of nominal control signals (30) is 
lost as depicted in Fig. 2. Based on the results of 
Theorem 2, using 0=iλ  for 2,1=i  and [ ]10=H , the 
robustifying terms are obtained as: 

 
Fig. 1 (a) State trajectories and (b) control signal of the 
unperturbed and passive system. 
 
 

 
Fig. 2 The unstable closed-loop perturbed switched system: 
(a) state trajectories and (b) the control signal. 
 
 

( )

) ),(201.02.0

2.0
01.01
12,

2
2
2

4
1

3
1

3
2

6
2

6
13

1
2

2
2

4
11

sSsignxxxxx

xx
x

xxxtxu

++++

⎜
⎝
⎛ +

−
−−−−=

(33) 

( )

) ),(cos01.02.0

2.0
01.01
1cos,

22111
3

1
3

2

6
2

6
13

1
221112

sSsignxxxxxxx

xx
x

xxxxxtxu

++++

⎜
⎝
⎛ +

−
+++=

(34) 

which stabilize the perturbed switched system. The 
simulation results are depicted in Fig. 3 which show the 
stability of the perturbed system. Please note that the 
rate of convergence of the states to the sliding surface 
can be arbitrarily improved by increasing 2,1, =iiλ  at 
the cost of increasing the amplitude of the control 
signal. 
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Fig. 3 The closed-loop switched system with perturbations: (a) 
state trajectories and (b) the robustifying sliding mode control 
signals (33) and (34). 
 
 
5 Conclusions 

In this paper, a redesigned robust integral sliding 
mode control is developed for a class of nonlinear 
dissipative switched systems with affine subsystems. 
The derived variable structure controllers guarantee the 
stability and convergence of the perturbed switched 
systems to the origin for norm bounded perturbations. 
The matched and unmatched perturbations are 
considered for the switched system, then the stable 
integral sliding surface is considered and the variable 
structure control is derived in Theorem 2. The 
redesigned variable structure controller preserves the 
stability of the closed-loop perturbed nonlinear switched 
system much similar to the unperturbed closed-loop 
switched system. Notice that, the existence of the 
dissipativity-based nominal control is required for the 
proposed redesign method. The simulation examples 
show the effectiveness of the proposed sliding method 
to dissipative nonlinear switched system in the presence 
of the matched and unmatched perturbations. 
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